| by Kenneth Chase | 20 comments

Ionic Compounds and their properties | The Chemistry Journey | The Fuse School

Many ionic compounds do not just exist in a laboratory or in your chemistry homework. Sodium Chloride is regular table salt. Sodium Fluoride is added to some toothpastes to help strengthen tooth enamel. Ammonium nitrate can be used to fertilize plants. Although their real-life applications are very different, they share a few key properties. In this lesson we will learn about the properties of ionic compounds. These ionic compounds have very high melting points and are brittle because of their 3D Giant Ionic lattice structure. The strong electrostatic attractions holding the 3D lattice structure in place mean that a lot of energy is required to overcome these attractions. When we apply a force, it breaks the regular repeating pattern of oppositely charged ions, causing ions with like charges to come close to one another. The ensuing repulsion breaks the lattice structure. Sodium chloride, sodium fluoride and ammonium nitrate can all dissolve in water, as we know, or else we wouldn’t be able to flavor our soups and brush our teeth or fertilize our plants. Most ionic compounds are soluble in water. In water an ionic compound can dissociate into its ions. So when we dissolve sodium chloride it will dissociate into sodium and chloride ions. These ions become stabilized in water due to the polar nature of water. As you can see, the sodium ions are stabilized by the negative dipole of water and the Chloride ions are stabilized by the positive dipoles of water. This solvation stabilizes the free-floating ions. An ionic compound dissolved in water can conduct electricity. This is another key property of ionic compounds. This is made possible due to the presence of free-floating ions. We can dissolve copper to sulfate. In water in a beaker add a few drops of sulfuric acid. Place a strip of copper and a strip of zinc into the solution. These will act as electrodes. Using two alligator clips connect one strip to one end of the mini light bulb and another strip to the other end to complete the circuit. You will see that the light bulb lights up, hence the solution conducts electricity. Following on the same idea, molten ionic compounds can also conduct electricity. The lattice structure is broken at high temperatures and so the ions become free-floating. In summary, ionic compounds have high melting points, are brittle and can conduct electricity when dissolved in water or molten due to the presence of free-floating ions.



Nov 11, 2014, 11:35 am Reply


Flora Lynphea

May 5, 2016, 6:57 am Reply

I have exams next week so this really helps ^^ thank you

yalla balaji

Sep 9, 2016, 10:43 pm Reply

it helped me.THANK YOU

yalla balaji

Sep 9, 2016, 10:43 pm Reply

it helped me.THANK YOU

cynda wu

Sep 9, 2016, 10:18 am Reply

Thanks, this helped me

Mr Sunny Coast

Feb 2, 2017, 4:46 am Reply

Rawrrrr XD


Mar 3, 2017, 1:19 pm Reply

wow this is actually so helpful, great visuals and clear explanations, perfect for my understanding!

Catsandkittens !

Apr 4, 2017, 6:32 pm Reply


Chinthaka Weerathunga

May 5, 2017, 3:26 am Reply

it is supre

Jimmy D29

Oct 10, 2017, 3:07 am Reply

Amazing animation, and good explaination.

Tommy Watson15

Oct 10, 2017, 12:21 pm Reply

Hi Rosina

Tommy Watson15

Oct 10, 2017, 12:21 pm Reply


Roshan Ehzuvan

Oct 10, 2017, 12:22 pm Reply

This really helped me mindful

Jimmy Electron Slayer of Technobeast

Nov 11, 2017, 7:31 am Reply

Ionic Compounds and their properties | The Chemistry Journey | The Fuse School

Tameem Alkhezzi

Nov 11, 2017, 7:39 pm Reply


Hadeer Rashad

Nov 11, 2017, 5:21 pm Reply

Thank u!

Johan Rott

Feb 2, 2018, 10:46 pm Reply

Almost ASMR 馃檪 Nice!

Caterina Volpi

Feb 2, 2018, 9:44 pm Reply


Marcus Kail

Mar 3, 2018, 9:34 am Reply


Jack Lyne

Mar 3, 2018, 9:34 am Reply

Raw xd

Leave a Reply